

Focus of Attention in Self-Supervised Learning for Action Recognition

Vansh Tibrewal¹, Bart Thomson², Michael Hugelshofer², Henning Richter², Pietro Perona¹, Neehar Kondapaneni^{1*}, Markus Marks^{1*†}

¹California Institute of Technology, Pasadena, CA, USA ²University of Zurich, Zurich, Switzerland [†]corresponding author: marks@caltech.edu *equal contribution

Background

Motivation

- Developing accurate quantitative models of animal behavior is important.
- Manual animal action recognition is too time and labor-intensive for large datasets.
- Supervised approaches struggle in the lowdata regime.
- Existing approaches:
- Focus on specific behaviors or specific animals.
- Use pose-estimation techniques which lose rich background in natural settings.
- Require a lot of annotated data.

Our Contribution

- We collect a novel dataset of videos of sheep that underwent surgery and annotated behaviors relevant to their wellbeing.
- We use **SAM-2** to **guide DINOv2** fine-tuning on those videos and demonstrate that this guidance can significantly **improve feature extraction**.
- We train a classifier on the fine-tuned DINOv2 embeddings of the video and use it to identify behavioral differences between experimental groups.

Framework Annotated Model (Training) Video Frames Linear Probe Pred Actual Label Standing Video Frames **Control Group** Eating Lying Standing Aggregate Behaviors Model **Predictions** * = statistically significant (Frozen) Across Video Group reatment Eating Lying Standing Group **Behaviors**

Fig 1. **Training + Inference Phase.** Linear probe trained to classify sheep behaviors with frozen feature extractor. Trained linear probe is used to predict behaviors of different groups of sheep.

Quantitative Improvements

	Labels						Macro-Average
	Head Down	Lying	Standing	Eating	Head Up	Moving	
SAM 2 Guidance							
×	0.9237	0.9811	0.9755	0.7892	0.4954	0.4840	0.7748
✓	0.9246	0.9937	0.9782	0.8232	0.6298	0.5416	0.8152
% Change	+0.10%	+1.28%	+0.28%	+4.31%	+27.1%	+11.9%	+5.21%
Temporal Information							
×	0.9246	0.9937	0.9782	0.8232	0.6298	0.5416	0.8152
✓	0.9331	0.9943	0.9754	0.8375	0.6711	0.5732	0.8308
% Change	+0.92%	+0.06%	-0.29%	+1.74%	+6.56%	+5.83%	+1.91%

SAM 2 guidance provides a significant,
 consistent downstream performance boost over regular DINOv2 fine-tuning, across all labels.

Incorporating temporal information further improves performance on dynamic behaviors such as moving.

Initial Location Temporal Propagation Using SAM 2 Cropped Images Generated from Sheep Masks

Fig 2. We use SAM-2 to crop around the sheep and then fine-tune DINOv2 on the cropped version of the dataset.

Baseline vs Regular DINOv2 vs Guided DINOv2 O.80 O.70 O.7

Application

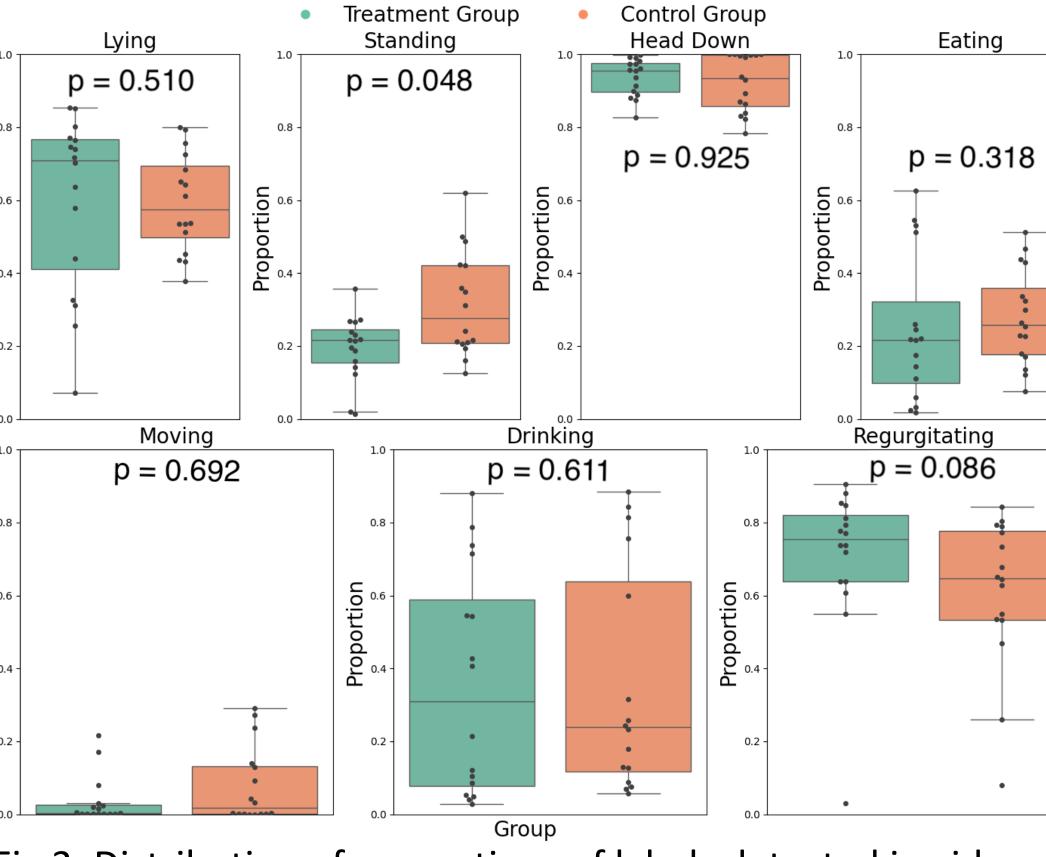
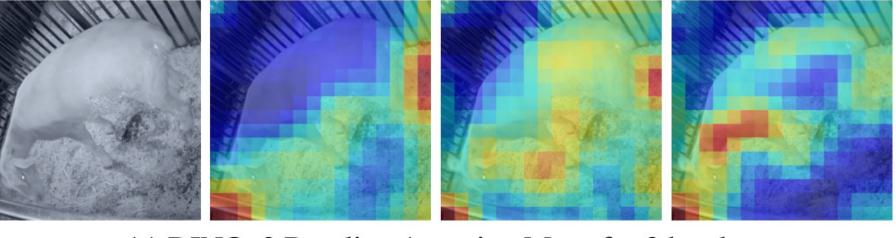
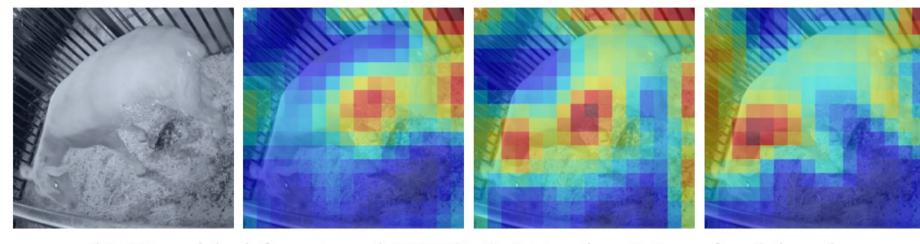


Fig 3. Distribution of proportions of labels detected in videos of the 2 groups of sheep. There's a statistically significant difference in the proportion of "Standing", with the control group standing more, which is expected neuroscientifically.

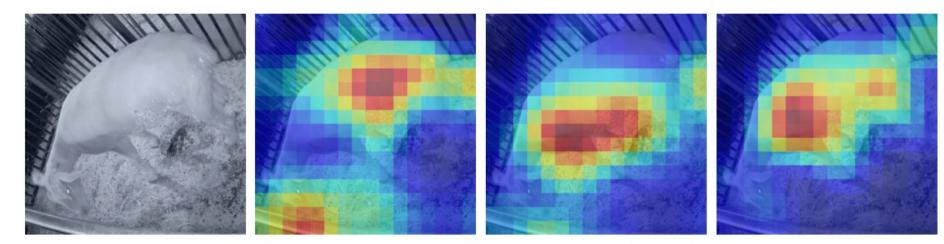
Qualitative Improvement



(a) DINOv2 Baseline Attention Maps for 3 heads.



(b) Unguided fine-tuned DINOv2 Attention Maps for 3 heads.



(c) Segmentation-guided fine-tuned DINOv2 Attention Maps for 3 heads.